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Highlights
The periaqueductal gray (PAG) and ros-
tral ventromedial medulla (RVM) are criti-
cally important hubs in the endogenous
analgesia pathway.

Technological and conceptual advances
have permitted the identification and
targeting of neural ensembles in the
PAG and RVM during complex behav-
iors, revealing that they divergently
modulate distinct components of
somatosensation.

In vivo imaging, viral tracing, andmolecu-
lar geneticmanipulations have afforded a
new layer of insight by characterizing the
function of genetically defined neuronal
Decades of research have suggested that stimulation of supraspinal structures,
such as the periaqueductal gray (PAG) and rostral ventromedial medulla (RVM),
inhibits nocifensive responses to noxious stimulation through a process known
as descending modulation. Electrical stimulation and pharmacologic manipula-
tions of the PAG and RVM identified transmitters and neuronal firing patterns
that represented distinct cell types. Advances in mouse genetics, in vivo imag-
ing, and circuit tracing methods, in addition to chemogenetic and optogenetic
approaches, allowed the characterization of the cells and circuits involved in de-
scending modulation in further detail. Recent work has revealed the importance
of PAG and RVM neuronal cell types in the descending modulation of
pruriceptive as well as nociceptive behaviors, underscoring their roles in coordi-
nating complex behavioral responses to sensory input. This review summarizes
how new technical advances that enable cell type-specific manipulation and re-
cording of neuronal activity have supported, as well as expanded, long-standing
views on descending modulation.
populations within the PAG and RVM.

How these identified pathways coordi-
nate other autonomic, motivational, and
defensive responses during ongoing
nociception remains to be addressed in
greater detail.

Further investigations into the PAG and
RVM in the descending modulation of
nociception, itch, and other complex be-
haviors are ongoing.
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Recent progress in our understanding of the descending modulation of
nociceptive responses
As early as the 1970s, initial forays to investigate endogenous modulation revealed that stimulation of
the ventrolateral PAG (vlPAG) was sufficient to inhibit behavioral responses to noxious stimulation in
rats [1,2]. This discovery was further translated and reproduced in humans, whereby neurosurgical
electrical stimulation of the vlPAG produced patient-reported relief for pain [3,4]. Since then, a large
body of work using a combination of pharmacology and electrical stimulation has identified the
roles of key structures, particularly the PAG and a downstream projection field, the RVM, in the de-
scending modulation of nociceptive behaviors [5–15]. These studies were instrumental in identifying
the brain regions, neurotransmitters, and neuropeptides involved in descending modulation.

It has been challenging to identify specific cell populations and precise neural circuits that mediate
descending modulation because previously available tools have broad effects on the regions
targeted. For instance, electrical stimulation and microinjections of pharmacologic agents could
act on multiple cell types and axons of passage in the vicinity of the site of stimulation or infusion.
Furthermore, many studies were conducted in lightly anesthetized animals, which made it difficult
to study neurons in the PAG and RVM in the context of natural behaviors.

Spurred by recent technological advances enabling cell type-specific recording and manipulation
of neuronal activity, there has been a renewed interest in characterizing the mechanisms of
descending modulation, with a focus on identifying the roles of specific cell types involved in
descending modulation, and the organization of their connections (Figure 1). Recent efforts
have used combinatorial genetic strategies, viral tools that enable improved connectivity tracing,
in vivo imaging approaches, and targeted manipulation of identified cell types in awake, freely
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Figure 1. Identified circuits within the PAG, RVM, and SC. (A) An overview of the major components of descending
modulatory pathways for nociception including the PAG, RVM, and SC. (B) Representative genetic overlap of PAG, RVM,
and SC neuronal populations in the modulation of nociception and pruriception. Color codes in A are described in further
detail. (C) Summary of effects of cell type-specific manipulations in the descending modulatory axis. Abbreviations: ChR2,
channelrhodopsin-2; DTA, diphtheria toxin A; Gad2, glutamate decarboxylase 2; Gi, hM4Di, Gi-coupled human M4

(Figure legend continued at the bottom of the next page.
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behaving mice. This review summarizes recent and foundational models for descending modula-
tion and explores the roles of the descending modulatory systems in coordinating the responses
to different types of sensory input, particularly nociception and pruriception.

Dissection of neuronal populations in the PAG and RVM using transgenic
approaches
Recent technological advances enable the targeting of distinct neuronal subsets expressing
specific molecular markers. Expression of loci-specific gene recombinases (such as Cre, Flp,
and Dre) in mice, via either targeted gene engineering or viral vectors, has led to the targeting
of neuronal populations based on their anatomical location, their spatial projections, or genetic
profile [16]. Combinatorial use of specific recombinase-dependent vectors further permits visual-
ization, mapping, and direct manipulation of targeted neuronal circuits [17,18].

Overall, recent efforts using Cre-driven approaches have supported the conclusions of previous
investigations. For example, activation of all neurons by delivery of glutamate or any agonist of
ionotropic glutamate receptors to the vlPAG results in the elevation of sensory thresholds and/
or reduced responses to noxious input [5,14,19]. By contrast, injection of GABA and GABA ag-
onists into the vlPAG enhances behavioral response to noxious input [15,20,21], suggesting that
pharmacological manipulations that increase PAG excitation facilitate antinociceptive behaviors.
Consistent with prior studies, studies using Cre drivers that target Vgat (GABAergic) and Vglut2
(glutamatergic) neurons in the PAG have likewise revealed that these two classes of neurons re-
ciprocally modulate nociceptive behaviors (Figure 1). Chemogenetic and optogenetic studies
have shown that activation of Vgat neurons enhances behavioral responses to noxious input,
whereas activation of Vglut2 neurons reduces behavioral responses to noxious input [22–24],
consistent with previous models established using pharmacology and electrophysiology. How-
ever, a new insight was the discovery that GABAergic and glutamatergic PAG neurons exhibit
modality specificity and are differentially engaged to modulate nociceptive and pruriceptive be-
haviors [22]. Targeting of the Vgat- and Vglut2-Cre populations in the PAG revealed that re-
sponses to nociceptive and pruriceptive input are divergently modulated: activation of Vglut2-
Cre neurons reduces sensitivity to noxious heat but facilitates chloroquine-induced scratching,
whereas activation of Vgat-Cre neurons does the reverse [22,23]. Thus, the ability to manipulate
specific neuronal populations during complex behaviors has exposed apparent opposing roles of
PAG neurons in the modulation of itch and pain behaviors.

The use of Cre drivers has led to the re-examination of prior models as well. For example, it was
previously thought that glutamatergic PAG neurons comprised the majority of the descending
projections to the RVM [5,25–29], while GABAergic neurons represented a tightly regulated inhib-
itory local microcircuit [5,11,30,31]. New evidence suggests that this idea is an over-
simplification. Targeting of Cre-defined PAG populations has revealed that those projecting to
the RVM can be glutamatergic [32–35] as well as GABAergic [36]. PAG GABAergic neurons
have been observed to innervate spinally projecting RVM neurons [37]. Although most behavioral
studies have tested the role of glutamatergic projections from the PAG to the RVM [32,33,35], the
specific roles of local GABAergic interneurons versus neurons in the PAG that project to the RVM
remain to be tested directly.
muscarinic DREADD; GPER; G protein-coupled estrogen receptor; Gq, hM3Dq, Gq-coupled humanM3muscarinic designer
receptor exclusively activated by designer drug (DREADD); GRPR, gastrin-releasing peptide receptor; KOR, kappa-opioid
receptor; NK1R, neurokinin 1 receptor; PAG, periaqueductal gray; pENK, proenkephalin; RVM, rostral ventromedial
medulla; SC, spinal cord; Tac1, tachykinin 1; TeLC, tetanus toxin light chain; Tph2, tryptophan hydroxylase 2; Vgat,
vesicular GABA transporter; Vglut2, vesicular glutamate transporter 2.
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The use of Cre alleles to explore the function of the RVM in descending modulation has also
helped to reframe the traditional classification of RVM neurons. In the RVM, single-unit recordings
in lightly anesthetized rats have classified neurons into three types: ON, OFF, and NEUTRAL cells,
based on their firing activity and responses to noxious stimulation [25,38,39]. ON cells exhibit in-
creased discharge during noxious stimulation, are inhibited by morphine, and have been pro-
posed to facilitate nociceptive responses. By contrast, OFF cells exhibit decreased discharge
during noxious stimulation, are excited by morphine, and are thought to inhibit nociceptive re-
sponses [25,40–42]. NEUTRAL cells are unaffected by noxious cutaneous stimuli or by exoge-
nous opioids, and their role in nociception is unclear, although they are generally thought to be
largely serotonergic [43] and are believed to participate in autonomic and homeostatic functions
[39,44–47].

The role of inhibitory neurons in the RVM, as a collective population, has been hotly contested.
GABAergic RVM neurons have historically been identified as pro-nociceptive, or ON cells,
based on pharmacology and electrophysiology studies [48–50]. However, it has been shown
that inhibitory neurons in the RVM also function to suppress the activity of ON cells, suggesting
they serve mixed functions [48,49,51]. When GABAergic (Vgat-Cre) RVM neurons were activated
using optogenetic or chemogenetic actuators, they were found to facilitate mechanical, but not
thermal responses [52]. Facilitation of thermal and mechanical responses was also observed
when a subpopulation of GABAergic RVM neurons, marked by G protein-coupled estrogen re-
ceptor (GPER-Cre) was activated [53]. However, another study found that chemogenetic activa-
tion of Gad2 RVM neurons (which comprise a subpopulation of Vgat neurons) produced inhibition
of both thermal and mechanical responses [54]. Activation of descending KOR neurons in the
RVM, an exclusively GABAergic population, robustly inhibited nociceptive and pruriceptive be-
haviors [33,55], a finding consistent with previous literature indicating that KOR neurons corre-
spond to OFF cells [48,49,51]. RVM neurons containing the neurokinin-1 receptor (NK1R),
which are also GABAergic, were recently shown to be ON cells that facilitated nociceptive re-
sponses yet suppressed pruritogen-induced scratching behavior [56]. Together, recent efforts
further refine the ON/OFF model by reinforcing the idea that GABAergic neurons in the RVM likely
comprise several discrete cell types, including both ON andOFF cells, which have opposing func-
tions in the behavioral responses related to itch and pain. Furthermore, the manipulations of de-
fined cell types have now delineated the specific roles of the GABAergic subpopulations in
specific nociceptive behaviors.

Lastly, the role of serotonergic neurons, classically thought of asNEUTRAL cells [57], in nociception
is also controversial. For example, in vivo recordings of serotonergic neurons have shown that they
are predominantly NEUTRAL cells [43], but pharmacological blockade of serotonergic signaling
between the RVM and spinal cord has also revealed that they can have both pro- and antinocicep-
tive roles [58–60]. A cell type-specific approach has been used to define the role of 5HT neurons in
the modulation of nociceptive behaviors in awake mice using targeting of Tph2 expression for
transgenic approaches. Tph2 neurons were found to facilitate mechanical and thermal sensitivity
upon optogenetic activation [61]. Fiber photometry recordings of RVM Tph2 neurons also demon-
strated that they are activated in the presence of noxiousmechanical and thermal stimulation [62]. It
is interesting to note that a subset of serotonergic neurons has been shown to co-expressOprm1
[63,64], an indication that serotonergic neurons may comprise subsets of ON and NEUTRAL cells.
Reconciling recent findings, it is likely that activation of serotonergic neurons gives rise to a pro-
nociceptive phenotype due to the specific excitation of 5HT ON cells [61].

Cell type-specific manipulations represent an efficient means to characterize subpopulations of
RVM neurons, which exhibit complex molecular identities. New Cre manipulations reveal the
542 Trends in Neurosciences, July 2023, Vol. 46, No. 7
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challenges in segregating neuronal subpopulations in the RVM across the original ON/OFF/
NEUTRAL schema. To harmonize recent findings with past recordings of lightly anesthetized
rats, it is clear that while activation of some GABAergic RVM neurons facilitates nociceptive
responses (i.e., consistent with ON cells) [52], not all inhibitory neurons in the RVM are
pro-nociceptive [54]. The serotonergic neurons that do not contain the mu-opioid receptor
may indeed correspond to NEUTRAL cells based on the classical schema.

Overall, recent studies that use cell type-specificmanipulations of neuronal activity in the PAG and
RVM have generally supported previous models for descending modulation. However, in the
case of RVM ON/OFF/NEUTRAL cells, it is clear that manipulation of distinct cellular subtypes
does not always produce results in agreement with classifications based on physiology. Further-
more, although recent efforts have not significantly challenged previous frameworks for descend-
ingmodulation, cell type-specific approaches have contributed new perspectives on the cells and
circuits involved in the descending modulation of nociception. In particular, the ability to directly
manipulate distinct neuronal populations in rodents has permitted the study of the role of specific
populations in complex behaviors in awake animals, revealing that descending modulatory sys-
tems are differentially engaged in pruriceptive and nociceptive behaviors.

Neurons in descending modulatory pathways participate in distinct aspects of
somatosensation
Exploration of cell types in the PAG and RVM using cell type-specific manipulations has yielded
surprising insights into the modulation of pruriception and nociception. Although most work ex-
amining the role of endogenous sensory modulation has emphasized reflexive responses to no-
ciceptive assays, recent areas of focus have been broadened to include other sensory modalities,
particularly pruriception.

Previously, electric stimulation of the PAG had been shown to reduce the histamine-evoked ac-
tivity of neurons in the spinal cord dorsal horn in lightly-anesthetized rats [65]. Much like noxious
stimuli, pruritogens were thought to facilitate the activity of ON cells and inhibit OFF cells in the
RVM [66], suggesting that descending modulatory systems regulate pruriception and
nociception similarly. However, more recent cell type-specific manipulation studies of PAG path-
ways have shown that both glutamatergic and GABAergic neurons differentially modulate
pruriceptive and nociceptive behaviors [22]. Activation of PAG GABAergic neurons inhibits
scratching but facilitates nociceptive behavior, whereas activation of glutamatergic neurons in-
hibits responses to noxious input yet facilitates scratching behavior [23]. This divergence illus-
trates that there are at least two classes of PAG neurons that exert dichotomous effects on
nociceptive and pruriceptive signaling pathways.

Thus, a major benefit of manipulating cell types in awake mice is the ability to examine a diverse
repertoire of responses to sensory testing. Chloroquine induced conditioned place aversion
(CPA) in control animals, but CPA was not observed with activation of GABAergic neurons in
the PAG [22], suggesting that the PAG is important for both the expression of the affective com-
ponent of itch as well as the motor response to pruriception. While the PAG and RVM are impor-
tant for the reflexive responses to pain and itch assays, additional work is necessary to examine
their contributions to the modulation of affective responses, and whether affective responses
could be due entirely to descending modulation, or whether ascending projections from the
PAG and RVM to other supraspinal structures may also be involved.

Advances in protein engineering permit imaging of neuronal activity during complex behaviors
based on changes in intracellular calcium. For example, using fiber photometry recordings, it
Trends in Neurosciences, July 2023, Vol. 46, No. 7 543
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was found that Tac1-Cre neurons in the PAG are active during pruritogen-induced scratching
[32]. Chemogenetic or optogenetic manipulation of Tac1 neurons further demonstrated that
they are both sufficient and necessary for eliciting scratching behavior and that the behavioral ef-
fects of activating Tac1-Cre neurons in the PAG are proposed to be mediated through gluta-
matergic signaling in the RVM. Interestingly, Tac1-Cre neurons were not found to be involved in
nociception [32], further illustrating a role in modality specificity among PAG neurons.

In the RVM, Cre-dependent manipulations of neuronal populations have also revealed that they
have different effects on behaviors that are mediated by distinct nociceptive circuits. Manipulations
of RVM GABAergic neurons drive opposing behavioral phenotypes in distinct nociceptive assays.
Whereas Vgat-Cre neurons facilitate mechanical withdrawal responses, Gad2-Cre neurons inhibit
thermal sensitivity to hotplate testing [52,54]. GABAergic RVM neurons containing NK1R were re-
cently shown to attenuate scratching behaviors yet drive different effects in mechanical sensitivity
depending on the Cre allele used [56]. Activation of NK1R neurons in the RVM using the NK1R-
CreER allele reduced mechanical thresholds in the von Frey assay, but when NK1R neurons
were activated with the NK1R-Cre line, no effect on mechanical thresholds was observed [56],
possibly due to the differences in the efficiency of capturing the NK1R population in the different
Cre alleles. It is also important to note that it is generally difficult to compare the functions of different
neuronal populations across different papers because not all studies included the same assays.
Nevertheless, recent observations contrast with those from single-unit recordings of RVMneurons,
which previously highlighted that RVM neurons respond to different sensory stimuli – including in-
nocuous and noxious mechanical, thermal, and itch stimuli – similarly [66–68]. The variety of stimuli
that can elicit similar responses from individual RVM neurons previously suggested that these cells
may not be tuned to the processing of distinct modalities of sensory input. Recent evidence chal-
lenges this view, though testing with consistent behavioral assays is necessary to understand the
extent to which RVM populations modulate responsivity to distinct types of somatosensation or
distinct types of behavioral responses. Additional work using recordings and imaging in freely be-
having animals will also help to address these important questions.

The evidence that manipulations of PAG and RVM neurons drive diverse responses to somato-
sensory input supports the idea that these structures contribute to the state dependence of
somatosensation, including nociception [39,45,69–72]. Although the PAG and RVM have been
classically thought to be important for the descending modulation of nociception, a view ex-
tended more recently to pruriception, new research has also elucidated their roles beyond
somatosensation. These other functions include the modulation of anxiety, the activation of de-
fensive responses, and the regulation of the autonomic nervous system [24,37,73–82]. The
PAG and RVM are extensively connected with several brain regions involved in other complex
functions, including the parabrachial nucleus (PBN), central amygdala (CeA), zona incerta, pre-
frontal cortex (PFC), locus coeruleus (LC), hypothalamus, and spinal dorsal horn [25,36,83–95].
Recent studies have begun to identify how some complex behaviors are modulated by distinct
neuron populations in the PAG and RVM that are defined by projection target as well as neuro-
chemical phenotype.

As an example, dopaminergic (DA) neurons in the PAG are critically important for the modulation
of nociception by opioids [96,97]. The antinociceptive effects of PAG DA neurons have been at-
tributed to projections to the RVM [98] as well as to the bed nucleus of the stria terminalis (BSNT)
[78]. Recent chemogenetic and optogenetic characterizations of PAG dopaminergic projections
to the BNST have unveiled their novel roles in modulating defensive responses in a sex-
dependent manner [99]. Activation of PAG dopaminergic projection to the BNST inhibits thermal
and mechanical nociception and responses to inflammatory injury in male, but not female,
544 Trends in Neurosciences, July 2023, Vol. 46, No. 7
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rodents. By contrast, activation of this pathway promotes locomotion in female, but not male,
mice [99]. These observations hint at the possibility that the PAG concurrently organizes complex
motor responses (including increased locomotion and reflexive withdrawal to noxious testing) in
the modulation of nociception.

Extensive neural networks may also explain the mechanisms by which the endogenous modula-
tory system could coordinate responses to nociception in addition to its other roles in homeosta-
sis and survival. Recordings of neurons in modulatory circuits revealed that these neurons are
tuned for diverse functions including sleep, micturition, respiration, sexual arousal, and thermo-
regulation [39,69,71,100,101]. Optogenetic stimulation of excitatory PAG neurons projecting to
the magnocellular nucleus of the medulla induces freezing [35] and a group of excitatory neurons
within the gigantocellular nucleus have also been shown to be involved in the modulation of on-
going locomotion through a direct pathway to the ventral horn [102]. Although behavioral results
following manipulations of cell types in the PAG and RVM are often attributed to a descending
pathway, the connectivity of the PAG and RVM with other brain regions could also account for
the observed changes in pruriception and nociception with global manipulation of cell types in
these areas. Thus, the diverse sensory, autonomic, and defensive roles of the pain-modulatory
pathways underscore their various contributions to integrating and coordinating ascending and
descending pathways that are crucial for survival.

Spinal neurons targeted by descending modulation
The spinal cord represents the final target of the descendingmodulatory system. The necessity of
spinal transmission within the context of descending modulation has been well characterized
[13,103–106]. Recent efforts have begun to elucidate the precise identities of spinal neurons
that receive input from the RVM in the context of somatosensation (Figure 2). Optogenetic and
chemogenetic manipulations of Vgat-Cre RVM neurons have suggested that GABAergic RVM
neurons descend to pre-synaptically inhibit mechanosensory input onto spinal inhibitory
enkephalinergic (Penk) interneurons [52]. Thus, descending GABAergic neurons could facilitate
mechanical nociception through the process of disinhibition in the dorsal horn. Alternatively, com-
bined optogenetic and electrophysiological experiments in spinal cord slices have suggested that
descending GABAergic RVM neurons inhibit GRPR-expressing neurons in the spinal cord [107],
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Outstanding questions
The PAG and the RVM are involved in
the integration of homeostatic pro-
cesses such as arousal, motor, and
defensive behaviors. What are the
responsible neuronal ensembles that
coordinate these behaviors with
somatosensation?

What are the genetic cell types
involved in descending modulation? A
comprehensive genetic atlas of cell
types in the PAG and RVM is presently
lacking. To date, the characterization
of cell types using Cre drivers has
been conducted based on the avail-
ability of mouse lines. Single-cell se-
quencing of these structures would
provide a more detailed understanding
of the diverse cell types, which could
then be targeted through specific Cre
alleles.

Sex differences in rodents, as well as
humans, have been reported in
descending modulatory pathways.
How do sex differences affect the
endogenous pain modulatory system
in both uninjured and injured states?

Acute and chronic stress can elicit
analgesia and hyperalgesia,
respectively. Structures such as the
PAG and its descending circuitry are
thought to be involved in mediating
these responses to stress. What is
the neural basis for stress-induced
modulation of pain?

As discussed in this review, the
descending modulation of pain, and
more recently, itch has been studied
in detail. What is the role for
descending modulation in the context
of other sensory modalities, such as
touch, cold, and heat?
a population that has been implicated in driving scratching behavior [108,109]. Together, these
reports suggest that GABAergic RVM neurons could facilitate nociceptive behaviors through
the inhibition of Penk spinal neurons and inhibit pruriceptive behaviors through the inhibition of ex-
citatory GRPR neurons (Figure 2). Using similar approaches, studies have also identified cell types
in other brain regions including the LC [110], medullary dorsal reticular nucleus [111], and hypo-
thalamus [112] that directly modulate spinal nociceptive circuits (Figure 2). It remains unclear
whether these other hubs for descending modulation of nociception intersect with PAG and
RVM pathways or represent independent and parallel circuits for the descending modulation of
nociception. Together, these different pathways likely represent partially overlapping components
of descending modulation.

Concluding remarks and future perspectives
Technological advances have allowed for the precise spatial and temporal manipulations of mo-
lecularly identified neuronal populations. New investigations into descending modulatory circuits
expand upon decades of work involving in vivo pharmacology, electrical stimulation, lesion stud-
ies, as well as single-unit recordings conducted in lightly anesthetized animals. Assessment of
neuronal activity in awake and freely behaving animals has confirmed and extended the roles of
the PAG and RVM in the descending modulation of nociception. Both past and present investi-
gations shed light on the complexity of the heterogeneous populations of neurons involved in de-
scending modulation. The application of novel tools and techniques has largely confirmed
previous models, and, by extension, permitted the anatomical and behavioral characterization
of discrete neurons in awake, freely behaving rodents.

A more detailed understanding of descendingmodulatory systems could provide insights into the
basis for interesting observations such as the finding that chronic pain disproportionately affects
women compared with men [113]. For example, sex differences have been observed in the rat
PAG with respect to opioid receptor expression and intrinsic GABA signaling [21,114], which
could explain differences in response to opioid medications observed in humans [113]. Further-
more, it was recently shown that dopaminergic activity in the PAG differentially engages motor
and sensory behaviors in male and female mice [99]. Additional work in this area is important be-
cause the existing models for descending modulation are based on work conducted primarily in
male rodents.

It is important to note that most recent studies have been conducted in mice whereas many orig-
inal discoveries on descending modulation were performed in rats. Despite the use of different
models, work from both species has generally yielded congruent results. For example, the func-
tional similarities observed in the PAG across both species are reflected in antinociceptive re-
sponses to local opioid administration within the PAG [115,116], the electrophysiological
responses of PAG neurons to noxious stimuli [117,118], and the anatomical connection between
the PAG and the RVM [37,77,119,120]. However, differences between species have also been
observed with respect to opioid receptor expression and signaling, highlighting the limitations
of extrapolating findings from single-species studies [119,121–124]. Thus, the lack of parallel
comparison obscures the potential and fundamental differences between the twomodels. Trans-
lation of research conducted in both mice and rats to humans is an important consideration for
future studies.

Another interesting question surrounds the contributions of the descending modulatory system
to chronic pain states. The structural and molecular changes that could occur in identified PAG
and RVM circuits during chronic injury states may underlie the development of chronic pain con-
ditions. Plasticity, such as increases in GABA tone within the PAG, has been observed in models
546 Trends in Neurosciences, July 2023, Vol. 46, No. 7
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of persistent inflammation [21,125]. The use of cell type-specific manipulations, combined with
electrophysiological techniques could further facilitate investigations into alterations in specific
pathways in the context of chronic pain.

While cell type-specific manipulations represent relatively new developments in the field of neuro-
biology, one limitation is that behavioral responses elicited by chemogenetic and optogenetic ma-
nipulations may not represent physiological states. Furthermore, artificial activation may not
necessarily reflect responses to natural settings. Another major limitation of these approaches
is that conclusions made from the targeting of individual populations often ignore or oversimplify
the heterogeneity within the nervous system. Although it is possible to discern unique properties
among neurons within a subset, these neuronsmay not represent truly unique populations per se
because the diversity of cell types within descending modulatory hubs, such as the PAG and
RVM, remains only partially characterized. The testing of specific cell types has been limited by
the lack of a full understanding of the diversity of cell types in these areas as well as the availability
of related mouse lines. A detailed atlas of cell types in the PAG and RVMwould tremendously ad-
vance research in the field of descending modulation by identifying additional cell types that could
then be validated and targeted, for instance, using Cre alleles (see Outstanding questions). The
validation of the precise neuronal subpopulations and pathways involved in descending modula-
tion holds promise for the discovery of targets and therapies for disorders of somatosensation
including pain and itch.
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